

Subject: A-Level Mathematics Year 2

Exam Board: Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0)

Overview:

After completing the AS qualification examination in May students start the year 2 A Level Mathematics content in the remaining weeks of the summer term.

Summer Term	
Outline of Key Learning	Specification Code
Trigonometry	6a, b
 Calculating with radians and applying to arcs and sectors Applying radians to small angles 	
Algebraic Fractions	2a, b
a. Simplify algebraic fractions b. Partial fractions	
Regression	1a, b of Statistics
 a. Change of variable b. Correlation coefficients – hypothesis testing for zero correlation 	
Probability	2a, b of Statistics
 a. Using set notation for probability b. Questioning assumptions in probability. 	

Overview:

Those students that have achieved the required grades at AS continue with the second year of study in September. They will apply the calculus skills learnt in Yr 1 to complex functions. They will deepen their Algebraic and Trigonometric understanding. In the applied modules they will learn to model using the Normal Distribution and solve Dynamics problems that involve friction and forces at an angle.

Autumn Term		
Outline of Key Learning	Specification Code	
Differentiation	8a, b, c, d and e	
 a. Differentiation sinx and cosx b. Differentiating logarithms and exponentials c. Differentiating products, quotients, implicit and parametric functions d. Calculate second derivatives e. Apply to rate of change problems 		
Functions and Modelling	3	
 a. Modulus functions b. Composite and Inverse functions c. Transformations d. Modelling with functions such as trigonometric, exponential or reciprocal 		
Series and Sequences	4	
a. Arithmetic and Geometric progressionsb. Sigma notationc. Recurrence and iterations		
Binomial Theorem	5	
 a. Expanding (a + bx)ⁿ for rational b. Expanding functions using partial functions 		

Normal Distribution	3a, b, c of
a. Understand and use the Normal Distribution	Statistics
b. Apply normal distribution to approximate binomial distribution	
c. Hypothesis testing for the mean of the normal distribution	
Numerical Methods	9a, b, c, d
a. Location of roots	
b. Solving by Iterative methods	
c. Newton-Raphson method	
Trigonometry	6c, d
c. Secant. Cosecant and Cotangent functions	
d. Compound and double angle formulae and proof	
Forces at any angle	5 of Mechanics
a. Resolving forces	
b. Friction forces	
Application of Kinematics	6 of Mechanics
a. Applying to projectiles	
Application of Forces	7 a, b of
	Mechanics
a. Equilibrium and statics of a particle	
b. Dynamics of a particle	

Overview:

The main focus in the first half of the term will be to complete the outstanding topics, particularly Integration and Proof. With these complete the students will focus on practicing exam style questions and improving their exam technique.

Spring Term		
Outline of Key Learning	Specification Code	
Trigonometry		
e. using and applying $R \cos (x \pm \alpha)$ or $R \sin (x \pm \alpha)$ f. Proving Trigonometric identities g. Solving problems in contexts	6e, f, g	
Parametric equations		
 a. Definition and converting between parametric and Cartesian forms b. Curve sketching and modelling 	7a, b	
Integration – part 1		
 a. Integrating exponentials and trigonometric functions b. Using the reverse of differentiation and using trigonometric identities to manipulate integrals 	10a, b	
Integration – part 2		
 a. Integration by substitution and parts b. Using partial fractions c. Calculate area under graphs or between two curves d. Apply and use trapezium rule e. Differential equations 	11	
Vectors (3D)	40	
a. Use of vectors in 3D	12	
Proof	1	
a. Proof by deduction and contradiction		

A variety of different resources are available to students to assist independent learning. These include:

- Edexcel A Level Mathematics Textbook
- Student Logins for Integral Mathematics
- Student Logins for Dr Frost Mathematics
- Exam Solutions https://www.examsolutions.net/a-level-maths/ and Maths Genie https://www.examsolutions.net/a-level-maths/ and Maths Genie https://www.mathsgenie.co.uk/alevel.html also provide a useful bank of Exam Style questions
- Revision Guides and Workbooks
- Specification link and further resources: <u>https://qualifications.pearson.com/en/qualifications/edexcel-a-levels/mathematics-2017.html#%2Ftab-AlevelMathematics</u>